Introduction to MemComputing and its Applications in High Performance Computing

Fabio L. Traversa, Ph.D., CTO

A MemComputing Inc.

Spun out 2016

Founders:

- Dr. Fabio Traversa, Co-Inventor, CTO
- Dr. Max Di Ventra, Co-Inventor
- John Beane, CEO, Serial Entrepreneur

Mission

Develop innovative computing platforms based on patented

Self-organizing Circuits and Computational Memories

Purpose

Overcome computational limits industry faces today and tomorrow

Pyramid of Motivations

Digitalization

Artificial intelligence

IOT - communication - big data

Exponential energy consumption growth

The end of Moore's law and Dennard scaling

Scale progress makes industrial problems intractable

The solution:
Non-von
Neumann
architectures

MemComputing

Neuromorphic computing

Quantum computing

Products

Real time computing (AI & NN, graphics, edge, comms)

Universal Memcomputing Machine

Turing

Instructions Head Tape

- Sequential
- General purpose (algorithm adapts problem to the machine)

Memcomputing

- Intrinsically parallel
- Adaptive (Machine adapts to the problem)

Proprietary

🍣 MemComputing Inc.

Direct implications

- Mitigate or eliminate entirely the von Neumann bottleneck
- Ultra low power and extreme performance distributed computing architectures
- Efficient solution of Turing (combinatorial) complex problems

⁻ F.L. Traversa and M. Di Ventra, IEEE Trans. Neur. Net. & Learn. Sys. (2015)

Computational Complexity Benefit

Equivalent to Non-deterministic Turing Machine

Efficient solution of NP problems within the Memcomputing Paradigm

The Challenge

Design a practical MemComputing Machine

Self-organizing circuits

Boolean Logic

Conventional logic gate

b ₁	<i>b</i> ₂	b out
1	1	1
1	0	0
0	1	0
0	0	0

F.L. Traversa and M. Di Ventra, *UCSD Patent* (2015), *Chaos* (2017)

Boolean Logic

F.L. Traversa and M. Di Ventra, *UCSD Patent* (2015), *Chaos* (2017)

Self-organizing Logic

Logic relation satisfied ⇔ Stable signal configuration

$$b_0 = b_1 \& b_2$$

Logic relation not satisfied ⇔ Unstable signal configuration

$$b_{o} \neq b_{1} \& b_{2}$$

F.L. Traversa and M. Di Ventra, *UCSD Patent* (2015), *Chaos* (2017)

Self-organizing Logic

Self-organizing logic gates

F.L. Traversa and M. Di Ventra, *UCSD Patent* (2015), *Chaos* (2017)

Self-organizing logic gates

F.L. Traversa and M. Di Ventra, *UCSD Patent* (2015), *Chaos* (2017)

From problem to solution

Self-Organizing Circuit Design Principles

- Functional analysis
- Topology and Topological field theory
- Stability Theory
- Chaos Theory

- Attractors and equilibria
- Convergence properties
- Control
- Absence of Chaos
- Criticality

Formal proofs:

F.L. Traversa and M. Di Ventra, Chaos (2017);

M. Di Ventra and F.L. Traversa, Phys. Lett. A (2017);

M. Di Ventra and F.L. Traversa, Chaos (2017)

Further readings:

F. Caravelli F.L. Traversa and M. Di Ventra, *Phys Rev E (2017);*

F. Caravelli, Entropy (2018);

S. Bearden, F. Sheldon, M. Di Ventra, EPL (2019)

Self-Organization & Non-Locality

- System is critical (edge of chaos)
- System has equilibria
- System is point dissipative

- Scale-free correlations
- Optimal convergence

M. Di Ventra, F.L. Traversa, I.V. Ovchinnikov, (Annalen der Physik 2017)

Instantonic Phase and Tunneling

- Scale free correlations
- Multidimensional state space
- "Hidden" state variables

- Instantonic Phase
- Convexification
- **Classical Tunneling**

(Arxiv 2021)

Virtual MemComputing Machine

Emulation of self-organizing circuits enables a radically different and more efficient use of the standard hardware to solve Combinatorial Optimization Problems

Traversa and M. Di Ventra, *UCSD Patent* 15), *Chaos* (2017), arxiv (2019)

Solving Satisfiability problems

Maximum Satisfiability Problem

clause
$$f = (x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor \neg x_4) \land \dots \land (\neg x_k \lor x_n)$$

$$OR$$
Literal

Goal:

Maximize the number of satisfied clauses or, equivalently, minimize the number of unsatisfied clauses

Satisfiability Problem

CNF formula

F.L. Traversa et al., *Complexity* (2018), F. Shelodon et al., *Arxiv* (2018)

Stress-testing Memcomputing

Simulations performed by

F.L. Traversa et al., *Complexity* (2018),

F. Shelodon et al., Arxiv (2018)

Dr. P. Cicotti, NSF San Diego Supercomputer Center using a MatLab code running on a single Intel Xeon processor

Stress-testing Memcomputing

Simulations performed by

F.L. Traversa et al., *Complexity* (2018),

F. Shelodon et al., Arxiv (2018)

Dr. P. Cicotti, NSF San Diego Supercomputer Center using a MatLab code running on a single Intel Xeon processor

27

Solving Integer Linear Programming Problems

Self-organizing Algebraic Gates

Self-Organizing Algebraic Gate Dynamic correction

F. L. Traversa, M. Di ventra, ArXiv (2018)

GPU & MemCPU

Distributed architectures are suitable for High
Parallelizable Solutions

Cplex, Gurobi, Xpress cannot take advantage of

distributed architectures

MemCPU can easily run on GPUs

Time to simulate on AWS CPUs and GPUs

Speed-up of large problems vs 1 CPU

AM LG Problem set

Problem size (number of non-zero elements)

CPU = Xeon Plat. 3.0 GHz @ AWS 36 Physical cores (72 Virtual cores)

MIPLIB: Integer Programming

 Released in 2010, MIPLIB2010 is an extremely well known set of instances used to benchmark Mixed Integer Programming (MIP) applications

- Of the ~360 instances in the set:
 - 50+ take at least 1hr to solve using commercial solvers (some still take days to solve)
 - 70+ are still open and unsolved

- Personnel Scheduling
- Open Pit Mining
- Production Lot Sizing
- Circuit Design
- Sensor / Telco Equipment Placement
- Network & Traffic Flow
- Haplotype Retrieval
- Protein Folding

MIPLIB Open binary problems

The interesting case of f2000

MIP problem

f2000 is an open problem from MIPLIB-2010

SAT problem

f2000 is an open from SAT competition since 2010

In 8 years no solver has ever found a feasible solution

F. L. Traversa, M. Di ventra, ArXiv (2018)

MIPLIB Open binary problems

The interesting case of f2000

With MemComputing we have Found multiple feasible solutions
In a 300 second run

The first within 60 seconds

MIPLIB Open binary problems

Open-shop scheduling

Problem Definition

- Each Job has a number of associated tasks that must be run on each of the machines.
- None of the jobs may have tasks running concurrently on a machine, and each machine may only run one task at a time.
- Goal is to find the most efficient schedule for all tasks.

Online vs Offline solution

Online

Schedule the tasks sequentially finding optimal scheduling based only on tasks already scheduled without changing their schedule.

- Run fast
- Low computational complexity
- Compact description (few variables)
- Strong suboptimal scheduling

Offline

Schedule the all tasks at once finding optimal scheduling.

- Run usually slow
- High computational complexity (NP hard)
- Non compact description (many variables)
- Optimal scheduling

Offline: ILP Formulation

- Given:
 - τ_{ip} : the time to complete j task on p processor
 - *T*: the upper bound runtime of the schedule
- We have the system of equations describing our ILP as:
 - o Minimize: $\max_{jp} \sum_{jp} (t_{jp} + \tau_{jp})$

Subject to

$$\circ t_{jp} \ge t_{j'p} + \tau_{j'p} - Ty_{jj'p}$$

$$0 t_{jp} + \tau_{jp} \le t_{j'p} + T(1 - y_{jj'p})$$

$$\circ t_{jp} \geq t_{jp}, + \tau_{jp}, - Ty_{jpp},$$

$$\circ t_{jp} + \tau_{jp} \leq t_{jp\prime} + T(1 - y_{jpp\prime})$$

OSS: online vs offline optimized scheduling

- --- Online
- ---- MemCPU
- --- Best ILP solver

- 10 minutes timeout runs
- Size = # jobs = # machines

OSS: online vs offline optimized scheduling

- ---- MemCPU
- --- Best ILP solver

- 10 minutes timeout runs
- Size = # jobs = # machines

Memory allocation (bin packing)

Problem Definition

- A set of M messages of different sizes
- A set of memory banks with capacity B
- Minimize the number of banks to allocate all messages M without exceeding the bank capacity

This problem, and its variants, is equivalent to the bin packing problem, a famous NP-hard problem

Online vs Offline solution

Online

Allocate messages sequentially finding optimal allocation based only the current memory allocation without changing it.

- Run fast
- Low computational complexity
- Compact description (few variables)
- Strong suboptimal scheduling, >50% proven suboptimal

Offline

Allocate all messages at once finding optimal allocation.

- Run usually slow
- High computational complexity (NP hard)
- Non compact description (many variables)
- Optimal allocation

Offline: ILP Formulation

- Given:
 - x_{mb} : binary variable equal to 1 if the message m is in the bin b
 - y_b : binary variable equal to 1 if the bank b is occupied
- We have the system of equations describing our ILP as:
 - o Minimize: $\sum_b y_p$
 - Subject to
 - $\circ \sum_{m} x_{mb} \leq B y_{b}$
 - $\circ \sum_b x_{mb} = 1$

Memory allocation

- --- MemCPU
- --- Best ILP solver

- 10 minutes timeout runs
- Size = # message
- Target: find allocation at most 5% above the lower bound.
- Notice, online algorithms are ~50% above the lower bound

47

Unsupervised Neural Network training

Efficient Restricted Boltzmann Machine training for deep learning

Pretraining each RBM (unsupervised learning)
Standard method:
Contrastive divergence

Training DBN
(supervised learning)
Standard method:
Backpropagation

Comparison: after 400 BP iters Standard Quantum MemComputing

Aircraft Loading Optimization

Aircraft Loading Optimization

Oil & Gas: Helicopter Routing Problem

Helicopter Routing Problem

Goal: Optimize the scheduling/routing of helicopters to offshore rigs

- Represents large operational expense
- Problem is combinatorial in nature
- Must consider:
 - Number of passengers
 - Cargo
 - Helicopter capacity constraints (weight, time, availability)
 - Number of destinations (shore to platform, platform to platform etc.)
- Intractable for today's computers
- Companies rely on heuristic techniques to solve
- Result is sub-optimal operations

Results

Compared to leading commercial solver

- Commercial solver takes hours for small instances
- Commercial solver unable to scale past 80 passengers
- VMM scales polynomially
- VMM finds near optimal solutions at scale in seconds
- Ability to improve operations & bottom line

Virtual MemComputing Machine

Scheduling for: 25 rigs, 2 kinds of helos, 1 heliport, varying # of passengers

